www.fltk.net > 1/(sin^4xCos^4x)的不定积分

1/(sin^4xCos^4x)的不定积分

分子分母同除以 cos^4x

=∫sin^4x(1-sin^2x)dsinx上面就是将sinx作为自变量,你可设sinx=u则:=fu^4(1-u^2)du=f[u^4-u^6]du 公式:(u^n)'=(n-1)^(n-1) ; fu^ndu=1/(n+1) *u^(n+1)+c=fu^4du-fu^6du=1/5u^5-1/7u^7+c再将u=sinx代入=1/5sin^5x-1/7sin^7x+c

前面是sinx的4次方还是sin4x啊

∫1/(sin)^4dx=-cosx/[3*(sinx)^3]+(2/3)∫1/(sinx)^2dx ∫1/(sinx)^2dx=-cotx 所以1/(sin)^4dx==-cosx/[3*(sinx)^3]-cotx+c,谢谢

这个我不知道发图片!我说下思路吧!先把分母sinx变成2sinx/2cosx/2 然后三次方后就可以和分子约去cosx/2的三次方!!简化后的式子直接分部积分(cosx/2/sinx/2^3这个整体是一个函数的导数),只要一步就能出来答案!!

连续使用高中公式cos2x=2cos^2x-1达到降幂效果、 ∫cos^4 xdx =1/4∫(1+cos2x)^2dx =1/4∫(cos^2 2x+2cos2x+1)dx =1/4(∫cos^2 2xdx+sin2x+x) =1/4[1/2∫(1+cos4x)dx+sin2x+x] =1/32sin4x+1/4sin2x+3/8x+C

网站地图

All rights reserved Powered by www.fltk.net

copyright ©right 2010-2021。
www.fltk.net内容来自网络,如有侵犯请联系客服。zhit325@qq.com