www.fltk.net > 定积分的几何意义是什么

定积分的几何意义是什么

定积分的几何意义是被积函数与坐标轴围成的面积,x轴之上部分为正,x轴之下部分为负,根据cosx在[0, 2π]区间的图像可知,正负面积相等,因此其代数和等于0。 定积分是积分的一种,是函数f(x)在区间[a,b]上的积分和的极限。 这里应注意定积分与不...

定积分的几何意义是被积函数与坐标轴围成的面积,x轴之上部分为正,x轴之下部分为负,根据cosx在[0, 2π]区间的图像可知,正负面积相等,因此其代数和等于0。参考下图:

解:若被积函数函数是非负的,则定积分的意义是:定积分从a积到b的积分:是函数图象与X轴、直线x=a x=b 围成的图形的面积。

不定积分计算的是原函数(得出的结果是一个式子) 定积分计算的是具体的数值(得出的借给是一个具体的数字) 不定积分是微分的逆运算 而定积分是建立在不定积分的基础上把值代进去相减 积分 积分,时一个积累起来的分数,现在网上,有很多的积分...

当f(x)小于等于零时 定积分表示所围图形面积的负值. 当f(x)在区间a,b 内有正有负,定积分表示所围各部分图形面积的代数和.(位于X轴上方的面积为正,位于X轴下方的面积为负)

如图

如果对一个函数f(x)在a~b的范围内进行定积分 则其几何意义是该函数曲线与x=a,x=b,y=0这三条直线所夹的区域的面积,其中在x轴上方的部分的面积为正值,反之,面积为负值

被积函数非负,定积分等于一个曲边梯形的面积,这个曲边梯形是由上半圆周y=√(a²-x²),直线x=-a,x=a以及x轴围成的上半圆。

定积分的几何意义:被积函数表示的曲线与坐标轴围成的面积,所以当你识别出某个定积分的几何意义时,即可根据求平面图形面积的基本公式直接得到答案。举个最常见的例子:

网站地图

All rights reserved Powered by www.fltk.net

copyright ©right 2010-2021。
www.fltk.net内容来自网络,如有侵犯请联系客服。zhit325@qq.com